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Ab!ltract-This p.tper is concerned with the determination of design sensitivity coefficients (DSCs)
for "fully nonlinear" problcms-Le. problems with both material and geometric nonlinearities-in
solid m\.'Chanics. The elastic strains are assumed to be small. but the nonelastic (plastic or visco­
plastic) stmins. ;IS well as rotations. can be arbitrarily large. DSCs here refer to rates of change of
response v;lriilbles. such as displacements or stresses. in a deforming solid body. with respect to
p.mmu.:lers (cillk-d design vari..bles) th..t deline the initi..1 (undeformed) shape of the body. These
DSCs arc history dependent.

The direct differentiation approach (DDA) of the rel\.'Vant derivative boundary clement method
(DIlEM) formulation is employed to obtain the DSCs. A general computer program is developed
for the an..lysis of two-dimensional (plane strain and plane stress) problems. Numerical results arc
obtain..-d for illustrative problems and are eompared against direct solutions. The rcsults from the
two methods .agrce almost perfectly for these problems.

This research has potential appliciltions in the optimization of manufacturing processes such
as elttrusion. rolling or forging.

INTRODUCTION

The subject of this paper is the calculation of design sensitivity coefficients (DSCs) for
"fully nonlinear" solid mechanics problems by the boundary element method (BEM). A
"fully nonlinear" problem is defined as one that includes both material (e1asto-plastic or
elasto-viscoplastic) and geometrical (large strains and rotations) nonlinearities. Problems
of interest are those with small elastic strains but with large inelastic strains and rotations.
Such problems have important applications in metal forming.

DSCs are rates ofchange of response quantities such as stress or displacement in a loaded
body with respect to design variables. These design variables could be shape parameters
that control the (initial) shape of part or all of the boundary of a body, or they could be
boundary conditions. material parameters. etc. Shape parameters as design variables are
of concern in this work.

DSCs are useful in diverse problems. An example is a design problem where the
performance of a modified design can be obtained from that of an initial design by using a
Taylor series expansion about the initial design. They are useful in solving inverse problems
(Zabaras et al.• 1988) and reliability analyses (Ang and Tang, 1975). A very important area
for the application of DSCs with respect to shape parameters is in optimal shape design.
An optimization process starts with a preliminary design and calculation of DSCs for
this design. Such a nonlinear programming algorithm [e.g. Vanderplaats (1983)) uses the
preliminary design and its sensitivities to propose a new design. The goal is to optimize
an objective function without violating the constraints (typically allowable stresses or

2503



2504 Q. ZHA:"G et 11/.

displacements) of a problem. This process is carried out in an iterative manner. producing
a succession of designs. until an optimal design is obtained.

There is a rich literature on the subject of determination of DSCs for linear problems
in mechanics. such as elasticity or heat transfer [see. for example. Haug et af. (1986)].
Basically. three different approaches have been used-the finite difference approach (FDA).
the adjoint structure approach (ASA) and the direct differentiation approach (DDA). Also.
both the finite element method (FEM) and the boundary element method (BEM) have
been used for these analyses by different researchers.

Attention is now focused on a very promising approach-DDA of the governing
boundary integral equations of a problem. Here. the exact differentiation eliminates errors
that might occur from the use of finite differencing and leads to closed-form integral
equations of the desired sensitivities. These equations are then solved by numerical dis­
cretization. This approach is very accurate and etlicient.

Recently. a number of researchers have published papers on the determination of
DSCs for linear elastic problems by the BEM. These include planar (Barone and Yang.
\988; Kane and Saigal. 1988; Choi and Choi. 1990; Zhang and Mukherjee. 199Ia).
axisymmetric (Saigal et af.. 1989; Rice and Mukherjee. 1990). and three-dimensional
(Barone and Yang. 1989; Aithal et af.. (991) problems. Work on second order DSCs for
linear elasticity problems has just been published by Zhang and Mukherjee (1991 b).

The problem of DSCs for nonlinear solid mechanics problems has only recently begun
to attr'lct attention. Arora and his co-workers (Wu and Arora. 1987; Cardoso and Arora.
1988; Tsay and Arora. 1990; Tsay et af.. 1990). Choi and his co-workers (Choi and Santos.
1987; Santos and Choi. 1988: Park and Choi. 1990) and Tortorelli (1988.1990) have
attempted nonlinear sensitivity problems with the FEM. Mukherjee and Chandra (1989)
have presented a BEM formulation for shape sensitivities for small-strain c1asto-plastic
and e1asto-viscoplastic problems. and Zhang et af. (1992) have recently obtained numerical
results for this class of problems. A REM formulation for fully nonlinear problems involving
both material .lI1d geometric nonlinearities has just been published by Mukherjee and
Chandra (llJlJ I). Many new and interesting issues. of a theoretical as well as numerical
nature. have arisen during the numerical realization of this class of problems. These issues
arc discussed in the present paper.

Inclusion of materially and geometrically nonlinear effects opens new doors in DSCs
and optimization research in that optimization of processes. rather than just products. can
now be attempted. One can. for example. attempt to optimize the shape ofa die for extrusion
or the shape ofa pre-form for forging. These problems. however. become quite complicated.
since nonlinearities arc involved. Accordingly. the response variables. and therd'ore their
sensitivities, become history dependent. Also. since nonelastic strain rates are typically
strongly nonlinear and sensitive functions of stresses. and DSCs are derivatives of history­
dependent response variables. the numerical process must be extremely accurate in order
to deliver meaningful results for the desired DSCs. In fact. in order to obtain the elasto­
viscoplastic results presented by Zhang et af. (1992). even a half percent numerical error in
some integrals of logarithmically singular functions proved to be intolerable and the inte­
gration algorithm had to be improved even further. The BEM. on the other hand. is known
to be extremely accurate if it is implemented with care. Thus. the DDA of the BEM has
very strong potential for success in solving these complicated problems with sufficient
accuracy.

This paper begins with a derivative boundary element method (DBEM) formulation
for fully nonlinear problems in solid mechanics. A BEM formulation for this class of
problems was first presented by Chandra and Mukherjee (1983) [see also Mukherjee and
Chandra (1987)]. An updated Lagrangian approach was used in that work. The present
work on sensitivities requires analytical differentiation of the BEM equations with respect
to geometrical parameters that define the initial (undeformed) shape ofa body. An updated
Lagrangian formulation of the deformation problem (Mukherjee and Chandra. \987) may
specialize the governing equations too soon and lead to errors in the sensitivity equations
that are obtained by differentiation of these equations. Therefore. the formulation of
Mukherjee and Chandra (1987) is revisited in this paper. The governing integral equations
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for the deformation problem are now derived in the current configuration ofa body without
the simplifications that arise out of the use of an updated Lagrangian formulation. This
discussion is followed by a presentation of the DBEM equations on the boundary and
inside a body.

It is also important to mention the salient features of the DBEM formulation. This
formulation, presented by Ghosh el al. (1986) and Ghosh and Mukherjee (1987), uses
tractions and displacement derivatives (rather than tractions and displacements) as primary
variables on the boundary of a body. This idea has two significant advantages over the
standard BEM. The first is that the kernels are only logarithmically singular for two­
dimensional elasticity problems. These weakly singular kernels can be integrated very
accurately by log-weighted Gaussian integration. Extremely accurate integration ofsingular
functions is an essential requirement for 'lccurate determination of sensitivities. The second
advantage is that boundary stresses can be obtained from the boundary values of tractions
and displacement derivatives by purely algebraic calculations. This allows one to determine
stresses and their sensitivities. on the boundary of a body, with excellent accuracy.

The BEM formulation for the deformation problem is followed by the sensitivity
formulation for planar problems. Interesting issues arise here. such as the differentiation of
a boundary length element or a normal vector in the current configuration, with respect to
shape variables that are only defined in the undeformed configuration. Also, the kernels of
the integral equations must be differentiated with respect to shape variables that define the
initial (undeformed) configuration of the body.

Following a brief discussion of the modeling of corners in a body [further detailed
discussions are given by Zh.lng and Mukherjee (1991 a) and Zhang el al. (1992)]. a section
on the numerical implementation of the deformation and the sensitivity formulation is
presented. The solution proceeds by marching forward in time. together with the updating
of the shape of the deforming body as required. Iterations are necessary within each time
step. An updated Lagrangi.m formulation is not considered appropriate here and is not
used in this p'lper.

The last substantial section of this paper is concerned with illustrative one-dimensional
problems-homogeneous large deformation of a body in plane strain or in plane stress.
Some geneml formulae. derived earlier in the paper. arc an.lIytically validated for these
one-dimensional problems. This is followed by the presentation of numerical results for
one-dimensional planar problems. A general two-dimensional computer program, based
on the DBEM formulation discussed above, is used to generate these numerical results.
These results are checked against "direct" solutions. which are considered to be nearly as
accurate as the exact solutions of these one-dimensional problems. Detailed considerations
of these one-dimensional problems serve as essential checks of the computer algorithm for
two-dimensional problems. It is felt that obtaining numerical results from a complicated
computer program, such as the one discussed in this paper. is meaningless without careful
validation of the numerical results in simple situations.

DERIVATIVE BOUNDARY ELEMENT FORMULATION

/Iltegral equations in the currcnt configuration
As discussed above. the boundary integral equations for fully nonlinear problems are

derived here without making the assumptions associated with an updated Lagrangian
formulation. Such a formulation had been employed in previous work (Mukherjee and
Chandra. 1987). The equations in this section are valid for three-dimensional problems so,
unless otherwise indicated, the range of indices is I, 2. 3.

Kincmatic and col/stitlltit'c assumptions. Referring to a set of spatially fixed rectangular
Cartesian co-ordinates. a material particle in a body is assumed to have co-ordinates X in
the original undeformed configuration (at time zero) and x in the current configuration (at
time t). The usual definitions are adopted for the deformation gradient F. the velocity
gradient h and its symmetric and antisymmetric parts. Thus.
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(1-4)

where v is the velocity vector and V is the gradient operator in the current configuration
(i.e. hij = Ol'JOXj ).

The key constitutive assumptions. which are valid in the current configuration, are as
follows: the first assumption is that the tensor d can be additively decomposed into an
elastic and a nonelastic part:

(5)

The second is that the material is homogeneous and isotropic, and the elastic field obeys
the hypoelastic relationship (Fung. 1965)

(6)

where a is the Cauchy stress. A. and G are Lame constants. tr denotes the trace of a tensor,
and I is the identity tensor. A hat (") over a denotes one of its objective rates. The Jaumann
rate is adopted here. but other objective rates can be used if desired. [See. for example,
Chandra and Mukherjee (1986) for the choice of objective rates in the presence of large
shearing stntins.] Thus.

a= q+a'w-u)"a

in terms of the m<lterial rate of the Cuuchy stress (denoted here us q).
A general form of u nonclustic constitutive law governing the bchuvior of dIn) is

(7)

(8,9)

where q,.. p = 1,2, .. .• k (where k is usuully u small integer), ure suitably defined stute
variables. which can be scalars or tensors. A general discussion of such unitied viscoplastic
constitutive models. using state variables, can be found in Mukherjee (1982). A conventional
plasticity model for material behavior can also be employed if desired. Discussion of the
choice of a specific constitutive model is deferred until later in this paper.

Relationships between stress rates. The relationships betwecn the Cauchy strcss a, thc
Kirchhoff stress T and the Lugntnge (nominal, nonsymmetric) stress S are

T = Ja, (10, II)

where J = det (F).
It is easy to prove the following relationships:

j = J tr (d). (12,13)

Using eqns (7) and (10)-(13). some straightforward algebraic manipulations rcveal thc
relationship

F'Sa= J +g. where g = a·w+d·a-(trd)a.

Also. in the current configuration,

(14. 15)
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(16, 17)

where "IC} and fll} are the Cauchy and Lagrange traction rates, respectively. and n is the
unit outward normal to a body at a point on its boundary.

Betti's theorem. The starting point of the BEM formulation is Betti's reciprocal
theorem. In the current configuration (Mukherjee and Chandra. 1987).

(18, 19)

and a: b - ai/hi} for any two second rank tensors a and b. The variables with superscript
R are the reference field variables due to a point force in an infinite. linear elastic. isotropic
solid undergoing infinitesimal deformations. They satisfy the usual field equations of linear
elasticity. Also,

UIR} - rr e
j - Vi/ }, (20.21)

where UIRI and "IR} are the displacements and boundary tractions for linear elasticity and
Vi) and 1';) are the usual Kelvin kernels [see. for example. Mukherjee (1982)]. Finally. e;
are Cartesian unit base vectors.

Using the definition of aiR) in terms of UIR), together with eqns (14) and (20), the left·
hand side of eqn (18) becomes

(22)

Using the divergence theorem, together with eqns (14). (16) and (17), one gets

(23)

where aD is the boundary of the domain D.
The second term on the right-hand side of eqn (23) can be shown to vanish as a

consequence of the rate of equilibrium equation (in the undeformed configuration) and
Nanson'S formula (see the Appendix). Consequently,

(24)

The treatment of the right·hand side of Betti's theorem. eqn (18). follows the same
approach as that given in detail by Mukherjee and Chandra (1987). The result is

where A is the Dirac delta function, 6;} is the Kronecker delta, and p and q are source and
field points, respectively, inside the body. In the above, it is assumed that di'r =O.

Finally. the following integral relationship is obtained in the current configuration:
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('j(p) =f [Vij(p, Q)rlll(Q) - Tij(p, Q)t',(Q)J ds(Q)
,'8

+12GViJ,k(P. q) d:C)(q) dt'(q) +1V,}.m(P. q)gm;(q) dt·(q). (26)

where P and Qare source and field points. respectively. on the boundary cB of the body.
It is interesting to note that the above equation is almost the same as eqn (3.36) in

Mukherjee and Chandra (1987) where the updated Lagrangian formulation was employed.
The only difference is eqn (17) for rill in the current configuration. Please see the Appendix
for further discussion of this issue.

DBEI\-! equations/or plane strain problems
The derivative boundary element formulation. as mentioned before. uses derivatives

of displacements (or velocities) together with tractions (or traction rates) as primary
boundary variables. For two-dimensional problems. partial integration is carried out on
the term Tut,; in eqn (26) so that one gets Ji = crRs (where s is the distance measured along
cB) as the boundary variable. together with a kernel Wij' When the distance between a
source and a field point (denoted by r) tends to zero. this kernel has a singularity of the
order of In r. This is weaker compared to the llr singularity of TI/' Details are given by
Ghosh et al. (1986). Unless otherwise indicated. the range of indices in this section is I. 2.

Boundary equations. The boundary integral equation corresponding to eqn (26). with
p - P. has the form

0= f [Uu(b. P. Q)r:l.'(b. Q) - Wi/(b. p. Q)6,(b. Q)] ds(b. Q)
,'8

+In [2GUi /.k (b. p. q) d:kH(b. q)J da(b. q) + In U'i.",(b. p. q)g",,(b. q) da(b. q). (27)

Here. k == O/OXk(q). The components of the vector b are shape design variables that define
the initial (undeformed) shape of the body. The dependence of quantities on b arc noted
above in explicit form since eqn (27) will be differentiated later with respect to design
variables. The kernel V,} is given in many references [e.g. Mukherjee (1982)]. and the explil:it
form of Wi} is given by Ghosh et al. (1986). They are both In r singular.

It should be noted that for some problems with prescribed velocity on a portion DB I

of oB. prescription of ~ on oB I may lead to loss of information on the velocity itself. This
may lead to loss of uniqueness of the solution obtained from this formulation. In sUl:h
cases. this ditliculty can be overcome by appending constraint equations of the type

L8 ~ds =v(B)-v(A).

where A and B are suitably chosen points on the boundary oB.

(28)

Stress rates and spin on the houndary, A boundary algorithm is very convenient to
determine stress rates and spin. at a regular boundary point. in terms of the primary
variables 'tel) (or 't(O') and O. together with d ln' , In order to do this. one can use the algebraic
boundary equations given by Mukherjee and Chandra (1991). [See Sladek and Sladek
(1986) and Cruse and Vanburen (1971) for the linear elastic case.] These equations [from
Mukherjee and Chandra (1991)] can. however. be solved explicitly. to obtain the stress
rates and spins on the boundary:
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where

(29.30)

Bjj/c = C2 t jtj tle •

ejlle, = -C2 t,tj t/ct,.

F';j/c = "I/jn/c +t j tj tie -c,njnjt/c.

G/j/c, = c)njnjn/cn, +21/njn/ct,.

with c, = vl(l-v). C2 = 2G/(I-v). c) = (1-2v)/(I-v). v is the Poisson's ratio of the
material. and tl are the components of the unit (anticlockwise) tangent vector to 08 at a
point on it. Finally. "III = "122 = 0 and Y,2 = -Y21 = I.

The spin can be obtained from hlj by using eqn (4) and the material rate of a can be
obtained from its Jaumann rate from eqn (7),

[m('rtla! ('quatiolls, Velocity gntdients and stress nttes are also required at points inside
the body. To this end. the version of eqn (27) at an internal point is first dilTerentiated at
a source point x(p). As discussed by Mukherjee and Chandra (1991). this procedure leads
to differentiation of an integntl whose kernel is already I/r singular. This problem can be
avoided by using the method proposed by Huang and Du (1988). The final equation can
be expressed as

h/f(b.p) =f [U/j,T(b.p, Q)tlLI(b. Q) - W/J,f(b,p, Q)JI(b. Q)1 ds(b. Q)
,JB

-2Gcllr' (b,p)f U"./c(b.p. Q)n,(b, Q) ds(b, Q)
iJB

-g",,(b,p) f U/j,m(b.p. Q)n,(b. Q) ds(b. Q)
t"'B

where

Since

+Is 2GUIj,kf(b.p. q)[dlrl(b. q) -cllr'(b.p)J da(b, q)

+Is UIj,mf(b.p.q)[gm,(b.q)-g,,,I(b.p)]da(b.q),

T= __0_ and hr-~
.- 1-;:' ()'iJ.·(Ap) u.'(, p

(31 )

the domain integrals are now only Ilr singular. Rajiyah and Mukherjee (1987) also present
alternate ways of treating these differentiated domain integrals.
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Stress rates at an internal point. The hypoelastic law [eqn (6)] can be used (0 obtain
the Jaumann rate of (I at an internal point from hand dIn,. It is convenient to rewrite this
equation as

(32)

Finally. the material rate of the Cauchy stress is obtained from the Jaumann rate from
eqn (7). The corresponding equations for plane stress are given in Zhang (1991) and are
not repeated here in the interest of brevity.

SENSITIVITY FORMULATION FOR PLANE STRAIN

Sensitivity equations. based on the direct analytical differentiation of the relevant
DBEM equations. are given in this section. Shape perturbations of only the undeformed
initial configuration X are considered in this work (Fig. I). so that the shape design vector
b is only defined in this configuration. The plane stress sensitivity equations are analogous
to these equations. Unless otherwise indicated. the range of indices in this section is 1.2.

Boundary equations
The tirst step is the differentiation of eqn (27) with respect to a (scalar) design variable

b. which is a component of the vector b. Let a superscribed· denote the design derivative
(w.r.t. h) of a variable of interest. and a superscribed • and ~ denote design derivatives of
its material rate and of its Jaumann rate. respectively, in the configuration X (i.e.
al) = dlTl}/db, di } = dri'l/dh. al } = dai}/db). Now, one obtains the equation

0= f [UI/(b. p. Q)ijl.l(b, Q) - WIj(b. P. Q)J,(b, Q)] ds(b. Q)
1~8

+f [UI/(b. p. Q )rJI.)(b. Q) - W:,(b. p. Q)e5,(b, Q)] ds(b. Q)
NI

+f [UIJ(b. p. Q)rjl.l(b, Q) - WIj(b. p. Q )c5,(b. Q)] d.i,(b. Q)
,'8

+L[2G Vljk(b. P, q) d:;l(b. q)] da(b, q) +L[2G V;Jk(b, P, q) d~;)(b. q)] da(b. q)

+L[2GVljk(b. P.q) dj;J(b,q)] du(b.q)+LV'jm(b,P,q)9m,(b.q)da(b.q)

Fig. I.
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+ f. V;""(b,P,q)g,,,;(b,q)da(b,q)+ f. Vij",(b,P,q)g",;(b,q)da(b,q). (33)

Here, V;jt = ViP" and the sensitivities of the kernels are

(34)

(35)

and

(36)

where Xt are the co-ordinates of a material particle at a current configuration (at time t)

and ,k = o/OXt(Q). Since -~t(Q) --~t(P) - O(r),Uij and Wij are regular and Vijt - O( I/r).
Thus, differentiation with respect to b does not increase the order of the singularity.

The design derivative of the Lagrange traction rate may be expressed as

with

.(l) _ ,3 ••• •
t j - n",(1",;+n",(1",j-n",g",j-n",g",j (37)

(38)

Various quantities such as X, tIS, da, n, and Ii must now be evaluated in order to usc the
above equation. These quantities can be obtained from the equations given below.

Equations/or F, F. d.~/dx, d.f anti du. Using the equations,

and

F = (d+w)'F, F(O) = I

t=(d+w)'F+(d+w)'F, F(O) =0.

(39)

(40)

the time histories of F and F can be obtained by time integration of Fand t, respectively.
Updating of the geometry of the body must be carried out, as required, during a

simulation. A useful formula for determining di/dx (i.e. _~;.j) can be derived as follows:

dx = F·dX.

Therefore.

.' • dx. dX
dx=F'dX+F'dX and -=F'F-'+F'-'F- 'dx dX

or, in indicial notation,

(41)

Equation (41) establishes a relationship between '~j.j and X/.J' Now,
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(42.43)

Design t'elocitJ' i. There are two ways of evaluating i on the boundary. The first of
these is to find

yep) = f: is ds+v(A). v(P) = ff' cS ds+f" 0 ds+v(A)
~ .~

(44.45)

by integration along the boundary 0B starting at some point A on the boundary where v

and vare known. Time integration oh and vgives u and u. Finally. at a point P on cB.

x = X+u.

The second approach is to find

. . .
x""X+u. (46.47)

at a point A on cB. Then. one may use

(48)

f'· ~.• ~Xi.

-"'I(P) = -.:i: ds+x,(A).
.~ v.~

(49)

(nternal values of i can bc obtaincd by intcgrating '~;,I along lincs parallel to the
coordinate axes starting at boundary points with known i. The first approach is used in
the numerical scheme presented latcr in this paper.

Determination ofn and n. Using Nanson's formula.

n'H ds = N dS. (50)

where H = F/J and N is the normal in the undeformed configuration. and taking derivatives
of both sides of the above equation with respect to b. one gets

n'H ds+n'H ds+n' H d.f = NdS+N dS.

This gives the formula

• [ •• dSJ I d.\' dSn = - n . H +N - H - - n- +n -- •
ds ds dS

(51 )

where dS/ds = fl,FiI/JN, = n,Fi2/JN2• The values of dS and N in the undeformed con­
figuration X can be found from formulae given by Zhang et al. (1992).

At the start of a time step. half of the sensitivities J; and i:LI are to be determined.
while all the rest of the quantities in eqn (33) are known, The quantities ,:Ll. c>;. d:~\ and
gm; are known from a solution of the standard large-strain BEM problem at this time.
and the sensitivity of the nonelastic deformation rates are known from differentiating a
constitutive model with state variables. eqns (8) and (9). with respect to h [see Zhang
(1991)).
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For large-strain problems. rlLI and gmi contain velocity gradients whose design sen­
sitivities are not known a priori. Thus. like usual large-strain problems (Mukherjee and
Chandra. 1987). iterations will be needed in order to solve eqn (33). The quantities '~i., must
be obtained from eqn (41) and used to find dS/ds and da/da. For this. the time histories of
F and it must be tracked during the deformation process.

Stress rate and spin sensitidties on the boundary
The sensitivity equations for ti and h on iJB are obtained by differentiating eqns (29).

(30) and (7) with respect to b:

(52)

(53)

(54)

SensitiL'ity equations at an int('rnal point
This equation is obtained by differentiating eqn (31) with respect to b and may be

written as

+ 18 [V,,r(b. p. Q )rll. l (b. Q) - Y1ir(b.p. Q )<5/ (b. Q)] ds(b. Q)

+1,8 [V,,r(b.p. Q)rlLI(b. Q) - YiJr(b.p. Q)<5/ (b. Q)] ds(b, Q)

-2G;'lf l (b.p) 18 V"db.p, Q)n,(b, Q) ds{b, Q)

(nl i·- 2Gd'k (b.p) Vtik(b.p. Q)n,(b. Q) ds(b, Q)
,JB

-gm,(b.p) r Vi/m(b,p, Q)1I,(b. Q)ds{b, Q)
Jt"

-gmi(b.p) r Vi/m(b.p, Q)n,(b. Q) ds(b. Q)
JeD

-gmi(b.p) r V,/m(b.p. Q)1I,(b. Q) dS(b. Q)J,lB
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-L2GPIj.,(b.p, q)[dl;) (b. q) -dl;'(b.p)] da(b, q)

+L2GP,jkT(b.p. q)[ci:;l(b. q) -cil;'(b,p)] da(b. q)

+L2GPijkr(b,p, q)[dj;l(b, q) -dl;)(b.p)] da(b. q)

+LPijmr(b.p,q)[gm,(b,q)-gm;(b,p)]da(b.q)

+LPijmr(b.p. q)[9m,(b. q) -9m;(b.p)] da(b. q)

+LPiimr(b.p. q)[gmi(b. q) -gmi(b,p)] da(b. q). (55)

where Y,,r = Wij.r and PI/kT = V ii.kl•

Although eqn (55) is long. it may be easily evaluated. The boundary kernels are regular
and the domain integrands are I/r singular. These domain integrals can be accurately
evaluated by standard means [e.g. Mukherjee (1982)]. The entire right-hand side of eqn

(55) is known at this stage except for the integrals involving 9mi. which depend on hlj'
Accordingly. itcrations are needed over eqns (33) and (55). These iterations are similar to
thosc needcd over velocity gradients for OEM analyses of large-strain problems.

Stress rate sensitivities at an internal point
Finally. the sensitivities aat an internal point are evaluated from a differentiated form

of the hypoelastic law [eqn (6)] with respect to h,

(56)

together with eqn (54) for dlj.
It should be noted here that the sensitivity equations from this formulation are nonlin­

ear, as are the equations governing the standard problem. The stiffness matrices of the
discretized forms of the sensitivity and standard equations, however. turn out to be identical.
This aspect is discussed further in the section entitled "Numerical Implementation".

MODELING OF SHARP CORNERS ON DB

The modeling of sharp corners has been discussed in detail by Zhang and Mukherjee
(1991 a) for the elastic case and by Zhang et al. (1992) for elasto-plastic problems. Two
kinds of situations can arise: (a) special corners across which the Cauchy stress tensor (f

remains continuous throughout a deformation process and (b) general corners across which
(1 can suffer a jump discontinuity. It is also possible for (1 to become unbounded at a corner,
but such situations are not considered in this work. The plane strain problem is considered
below.

In certain special situations. the Cauchy stress tensor (and therefore its material rate)
remains continuous at a corner throughout the deformation history. An example is a right­
angled corner in which the corner angle remains a right angle throughout a deformation
process. Another example is a corner that arises from using symmetry in a problem where
the point was originally regular. In such cases, one can write corner equations in a manner
analogous to the cases that have been considered before by Zhang and Mukherjee (199Ia)
and Zhang et al. (1992):
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(57)

where ci
"

• on either side of the corner, is obtained from eqns (7). (29) and (30) [together
with (4)]. as functions of components of f(C), 6. d(ftl and (1, as well as v. G. nand t. In this
case. the corner sensitivity equation is of the form

ui; = c1,;. (58)

A possible option for the general case is to invoke continuity of the velocity v at a
corner. This leads to integral constraints as shown below. Suppose that AC and CB are
two smooth segments that meet at corner C. Then. continuity of vat C demands that

(59)

where P within AC and Q within CB are points at which the velocities are known. Of
course. if velocities are not known at any point within smooth segments contiguous to a
corner. then velocity information from points farther away must be used and eqn (59) must
be suitably modified. Knowledge of vat anyone point on oB is sufficient for this idea to
work.

Equation (59) gives two equations at each corner. and this extra information is sufficient
to solve the problem. The sensitivity equation corresponding to (59) has the form

(60)

A word ofcaution here. Sometimes. as discussed in detail by Zhang and Mukherjee (199 Ia).
Don and associated rotations can become singular at a corner. In such cases. care must be
exercised in using eqns (59) and (60) in the general case. Suitable shape functions for Don
must be employed to reflect this singular behavior.

NUMERICAL IMPLEMENTATION

Discreti:ation ofequations
The discretization procedure is quite standard and is similar to that used for small­

strain elasto-viscoplastic problems (Zhang et aJ., 1992). For plane strain problems, the
DBEM equations (27) and (3 I) and the sensitivity equations (33) and (55) must be dis­
cretized. Of course. the corresponding equations from Zhang (1991) must be used for
plane stress problems.

The boundary of the body aB is subdivided into piecewise quadratic, conforming bound­
ary elements. The variables f(l) and 0, their sensitivities ill) and 8, and the scalar ds/ds are
assumed to be piecewise quadratic on the boundary elements. The domain of the body is
divided into Q4 internal cells. The tensors d(ft) and g, their sensitivities, and the scalar dal
da are interpolated on these internal cells.

As has been mentioned before, singular integrals must be evaluated with great care for
these problems. Logarithmically singular integrands are integrated with log-weighted
Gaussian integration formulae on the boundary elements. The Ilr singular domain integrals
are first transformed into regular ones by mapping (Mukherjee. 1982, pp. 91-92) and then
evaluated by regular Gaussian quadrature on a square. The number of Gauss points used
for regular and log-singular boundary integrals are 20 and 16, respectively. For regular
domain integrals. as well as Ilr singular domain integrals which are transformed to regular
form, the number of Gauss points used is 3 x 3.
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When comers exist on cD. the comer equations are added to the usual DB EM equations
(22) and (33) and all the equations are assembled together. The resulting systems of
boundary equations are of the form

(61 )

and

(62)

where the right-hand sides of the equations contain contributions from the last two integrals
of eqn (27) and the last eight integrals of eqn (33). It is important to note that {rIll} and {C,}
contain the unknown velocity gradients h through the tensor g [and similarly for the
discrctizcd sensitivity equation (62»). so that iterations. within each time step. now become
necessary. Details of this procedure are given in the next section. Another important fact
is that the coefficient matrices [A] and [D] are identical in eqns (61) and (62). Internal point
equations (31) and (55) are discretized in a similar fashion.

SollitiOf/ strate!!}'
The solution algorithm for large-strain elasto-viscoplastic problems, which involves

solutions of appropriate equations at the beginning of each time step and then marching
forward in time. is discussed in detail in several papers (Chandra and Mukherjee. 1983;
Mukherjee and Chandra. 1987). Iterations arc needed. since the velocity gradients appearing
in egn (27) (in a dorn'lin integml and in the boundary integral through rl L

) arc not known
(/ priori. One important advantage of this DBEM formulation over the usual BEM for­
mulation (Mukherjee and Chandra. 1987) is that velocity components do not appear, by
themselves. in these el)uations and that the boundary velocity grudients can be directly
evalu:.tted from eqn (30).

Sensitivity calculations must also be carried out using a procedure analogous to that
of the usual large-strain problem. Also, this must be done in parallel with the usual problem.
Iterations over sensitivities of velocity gradients arc now needed.

Another important difference between the usual large deformation simulation and the
sensitivity analysis of large deform'ltion problems is that not only the body geometry but
also the design quantities. such as 1" d~'/ds and da/da, need to be updated during the
simulation.

The algorithm (for the sensitivity problem) for going from time t to t+!:J.t is illustrated
in Fig. 2. The complete solution strategy is as follows:

(I) Solve the elasticity problem to obtain the initial (time zero) solutions for !:J." r" (1i/,

tI,,!, tI, and ~" r,. n", ti,.j' ti,~ Usually, one starts from a zero elastic solution.
(2) Obtain the tensors d~k) and dj;l from the constitutive equations and the derivatives of

the constitutive equations.
(3) Solve the DB EM equations for the standard problem.

(3. I) If t == 0, assume h,j == O. Otherwise use value from previous time.
(3.2) Solve eqn (27) with estimated values of rlL

) and prescribed values of ~I on the
boundary.

(3.3) Use the boundary algebraic equation (30) to determine hI} on the boundary.
(3.4) Solve eqn (31) for hlj at selected internal points.
(3.5) Check convergence of h ii . If it is not satisfied. use the calculated value of hii as

the new estimated value and go to step (3.2).
(4) Solve the DBEM equations for the sensitivity problem.

(4.1) If t == O. assume hI} == O. Otherwise use value from previous time.
(4.2) Solve eqn (33) with estimated values of ilLI and prescribed values of 3, on the

boundary.
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• • (n) •
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0
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IJ

0

Use Eq.(S6) and Eq.(S4) Get Gij inB

0

UlIC Eq. (40) Oel F

Integrale to t. i\I Get (J ij. F

Fig. 2. Solution str;ltcgy for large: deformation problcms.

(4.3) Use the boundury algebmic equation (53) to determine hli on the boundary.
(4.4) Solve eqn (55) for h" ,It selected intermll points.
(4.5) Check convergence of hll • If it is not satisfied, use the calculated value of h,) as

the new estimated value and go to step (4.2).
(5) Calculate boundary values of ii'l and ri'/' as well as a,j and a'i' from eqns (29), (7),

(52) and (54). respectively.
(6) Calculate internal values of a'i and ri". as well as a,} and al" from eqns (32), (7), (56)

and (53). respectively,
(7) Obtain 1'1 and C, on the boundilry iJB by integrating 0, and 3, along the boundary using

eqns (44)-(45) (ilt time zero, lG/ds = dS/dS). The internilr values of \', can be obtained
by integrating "" along lines pilrallclto the Xl and Xz axes starting at boundary points
where I', are known.

(8) Use eqns (39) and (40) to calculate Fand f:.
(9) Integrate the rate quantities ri'l' a.1' 1',. r,. F and f: in time to obtain (1il' alj' tli' Iii' F

and Fat t + at. The displacement sensitivity components Ii, are available only on the
boundary. The other quantities are available both on the boundary and in the domain.

(10) Determine if the geometry of the body needs to be updated. If the answer is yes, go
to the next step: otherwise. go to step (2) until the simulation ends.

(II) Update the geometry of the body.
(11.1) Use eqn (41) to obtain ,~,.I first.
(11.2) Determine d.~ and da on the new geometry from eqns (42) and (43).
(11.3) Calculate X, (both on aB and in B) and '~i (only on aB) from eqns (46) and

(47).
$AS 29:l0-G
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Lz • Pz

ur-----"-4-----'

Fig. 3. Illustrative one-dimensional problem.

(11.4) The internal values of '\-I can be calculated by inlegrating '\-/.1 along lines parallel
to the x I ami x" axes starting at boundary points where '\-I are known.

(11.5) Update all the kernels and derivatives of the kernels that appear in eqns (27),
(31), (33) and (55) and go to step (2).

For classical clastic-plastic material models, ;'Ji' depends on all' as well as on the stress
components and their sensitivities. This requires iterutions over ;':i' within each time step.
The sensitivity problem, however. still has approximately the same level of complexity as
the original e1aslic-plastic problem. For large-strain problems, iterations over tili' may be
carried out within the iteration scheme for hi/.

Thus, large-strain sensitivity problems of elasto-plasticity and elasto-viscoplasticity
are expected to require less than twice the computational effort needed for the regular OEM
analysis including both geomelric and material nonlinearities when sensitivity with respect
to one design variable is needed. In a typical design environment. however, sensitivities
with respect to a large number of design variables are desired. [t is interesting to note here
that the determination of sensitivities with respect to additional design variables does not
require solutions of new matrix systems. The coetftcient matrices remain the same for all
cases, only the right-hand sides change. Hence, for the slight increase in additional costs
due to additional evaluations of the right-hand side, it is possible to simultaneously track
the sensitivities with respect to several design variables.

ILLUSTRATIVE ONE·DIMENSIONAL PROBLEMS

The prohlem
The example considered here is a rectangular plate of initial length L, of unit width.

The problem can be plane strain or plane stress. The plate is deformed to a current length
, by a prescribed displacement history ii.

Figure 3 shows two such plates of initial lengths L I and L 2• A generic material point
XI. in this simple one-dimensional situation, moves to x, and X2 moves to Xl, where

(63,64)

The design deformation XI ..... Xl is assumed to be of the form



Shape design sensitivity analysis 2519

(65)

As discussed by Zhang et al. (1992). the above expression for the design deformation at an
internal point is not unique. However. such an assumption only affects sensitivities inside
a body. not on its boundary.

As a consistency check. one can write

(66)

where L is the design variable. It is easy to show that

(67.68)

so that. from eqn (66).

• X' I.

x=[(I+II).

Now.

(69)

as expected. Also.

• ,,11,-111 XI.
II = 1m = II

/\/., II L, - L I L' so that .r = X+u

• I./ = I +u.

C01/Si.vtellcy check ojjtmnlliae jt)r F. t. d.r/dx. d.i· alltl du fur aile-dimensional strain
A one-dimensional strain problem is a plane strain problem with only a single com­

ponent of the displacements at every point in the body. Let this component be the dis­
placement in the x, direction. The only nonzero components of F and d. therefore. are

Now.

• i I • v v.
F

"
= L- L! and d ll = 7- p.f.

(70.71)

(72. 73 and 74)

In the above. L' is the velocity component in the I-direction. Also. w = O. From eqns
(63) and (69).

• • X !.

XI =X=,(I+II). (75)

Various formulae presented before can now be easily checked for this simple one­
dimensional case. Equation (39) for F is obviously valid. The right- and left-hand sides of
eqn (40) become v/L-L'/L2

•

The formula (41) for .r i .! with dX/dX = I/L. gives



2520 Q. ZHANG I!/ ul.

dot. I +J
dx = XI.I = -,-

which is consistent with eqn (75).
From eqns (42) and (43) (dslds is evaluated on edges parallel to the XI axis).

ds I +J dci I +J
ds = -,-. da =

which are correct since. in this case. s can be identified with x. i.e. [see eqn (75)]

• S t
s=,(I+u).

lIIustratil'e constitutil'e model
The DBEM formulation presented in this paper is quite general. and any of a large

number of elasto-viscoplastic constitutive models can be used here to describe material
behavior. The reader is referred to Mukherjee (1982) for a discussion of such models.

The particular model chosen for the numerical results discussed in this paper is due to
Anand (1982). This is a unified e1asto-viscoplastic model with a single scular internul
vuriable s. The model. adapted to the present multi-axial situation. is described by the
equation

3d,n)

'

Ill) ,'I, =., "'i'-"
(76)

where 11;/ are the components of the deviatoric part of the Cauchy stress and (1 is the stress
invariant defined us

The invariant dIn) is given by the equation

together with the evolution equation

. ( 0\') (n)S = hn I - -:. €I •
,Ie

where

[ '

In) InI Q'KT
Se = s. A e ' .

(77)

(78)

Here. T is the temperature in degrees Kelvin. Q is the activation energy and K is the
Boltzmann constant. Also. A. ho• 5•• m and n are material constants of which m and n are.
in general. temperature dependent. The particular parameters used here are representative
of F. - 0.05 carbon steel in a temperature range of 1173-1573 K and strain rate range of
1.4 x 10- 4 S - I to 2.3 x 10- 2 S - '. These parameters have been used for all the isothermal
simulations (at T = 1173 K) reported here. They arc
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A == 10" s-'. hI) == 1329.22 MPa.

s. == 147.6 MPa. m == 0.147.

11 == 0.03. Q/K == 3.28 X 104 K.

together with elastic constants (at 1173 K)

G == 2.2615 X 103 MPa. v == 0.3.

2521

Also. the initial value of the state variable s is 47.11 MPa and the initial value of the
sensitivity sis zero.

Numerical examples
A computer program for numerically calculating sensitivities for general two-dimen­

sional (plane strain or plane stress) problems has been developed. It is crucial that results
from such a computer program be carefully checked against analytical (or direct) solutions
for simple geometrical situations. The problems described here are a one-dimensional strain
problem in which the only nonzero displacement is II, and a one-dimensional stress problem
with the only nonzero stress q I" The plane stmin version of the two-dimellsional DB EM
computer prognlm is employed to solve the one-dimensional strain problem. while the
plane stress version is used to solve the one-dimensionul stress problem. In both cases. a
constant velocity t.o == 2 x 10 - 3 m s - I is applied in the x, direction with a very small vulue
of initial strain in this dirt."Ction. The design vari'lblc is the initial length L in the x, direction.
The initi.tl dimensions of the plate arc 2 m x 2 m. The const.tnt time step !J.t for explicit
time integration is n.ol s. These tests serve to verify the methodology and the algorithm of
the OBEM approach. especially the updating of the geometry as well as quantities such as
.\-. d.~/ds. and dei/da during a simulation. These quantities are updated every second in these
simulations.

Direct solution for tltt' one-dimensioll"l strai" prohlem. A direct solution is obtained by
time integration of the one·dimensional equations. For the one·dimensional strain problem
being considered here.

v,., == cI" == vo/l. rest of VI.) == O. wi} == o.

From the hypoelastic law (6) [and eqn (7)].

. • 2(I-v) G Vo 2Gd(nl
q II == q II == I _ 2v I - II. (79)

. • 2v GVo 2Gcltn1a.,.,=a2"==-- -- "" •. - - 1-2v I .-

The rest of the stress rates vanish.
For the corresponding sensitivity equations.

(80.81)

and

t. •• •
u == O. 1= 1. dslds == Ill. dalda;: 111

2(1- v) Vo •
et ll = - 1-2v G12 -2Gd'N.

-'v Vo •
et" == - -:::'-G- -2Gd\n~.- I - 2v 12 ._.

(82-84)
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Fig. 4. Results for 1·0 strain. 1'0 .. 2 x 11/ (m s - '). FDD: Finite difference of direct solutions; ():
Direct; DB EM : Deriv;llive OEM; ADD: Analytical dilferenti"tion \)f direct solutions.

The quantities dIn) and dtnl arc obtained from the constitutive equations (76)-(78)
together with the derivatives of these equ.ltions with respect to the design variabk L. These
sensitivity equations, derived from the above constitutive model, arc given in Zhang (llJlJ I).
Similar equations can be easily derived for the one-dimensional stress problem.

Numerical results. The physical situation, as well as the results, arc shown in Figs 4
and 5. The boundary conditions, in terms of the rate quantities and their sensitivities, also
appear in Figs 4 and 5. The OBEM model has nonstandard boundary variables. and these
must be prescribed such that a unique solution is obtained (Zhang et al., 1992).

Figure 4 shows the stress-dependent plot in the x I direction (11 11 as a function of II))

and the corresponding sensitivity plot (0- II versus III) for the one-dimensional strain
problem. The displacement is the abscissa since, in these examples, the velocity, rather than
the strain rate, is kept constant and insensitive to the design variable L. Also, "0" refers
to the direct solution, "FOO" to the finite difference of direct solutions, and "ADD" to
the analytical differentiation of a direct solution. The direct solution is a time-marching
solution obtained by integrating the one-dimensional equations given in the previous
section. The FOO solution is obtained with IiL = 0.001. The OBEM numerical results are
obtained employing four quadratic boundary elements (one for each edge) and four internal
Q4 elements with one internal point at the center of the plate.

The corresponding situation for one-dimensional stress problems is depicted in Fig. 5.
The OBEM numerical solutions on the four plots are seen to agree almost perfectly with
the direct solutions. which can be regarded as semi-analytical solutions of the problems.
From a practical point of view, the one-dimensional strain problem is somewhat unrealistic
in that it is over-constrained and requires very large stresses for the deformation shown in
Fig. 4. However, this example serves as a good check for the computer program.

It is interesting to note that the sensitivity plot for the one-dimensional stress problem
is considerably more complicated than the corresponding plot for the one-dimensional
strain problem. The first oscillation (at low strain) in the sensitivity plot in Fig. 5 is due to
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the clastic-plastic transition. The reasons for this arc discussed in detail in the paper on
sensitivities in small-strain elasto-plastic problems (Zhang el al., 1992).

CONCLUSIONS

The first results for DSCs for solid continua undergoing large deformation, obtained
by direct analytical differentiation of the relevant boundary integral equations, are presented
in this paper. The elastic strains in these deforming solids are assumed to be small, but the
nonelastic strains and rotations can be arbitrarily large.

The DSCs, for this class of strongly nonlinear problems, are history dependent. Also,
the demands on the accuracy of solutions for these problems are very high. Thus, although
these first numerical examples have simple geometry, it is very encouraging to see that the
DSCs are obtained accurately over the entire history of the deformation process.

DSCs are useful in diverse applications. The primary goal of this ongoing research
program is the optimal design ofnonlinear processes-primarily manufacturing processes­
in solid mechanics. Thus, it is expected that the approach for sensitivity calculations
presented here will prove to be very useful for problems such as the design of optimal die
shapes for extrusion or optimal pre-form shapes for forging. Such problems are extremely
challenging. but potential rewards from solving these problems are expected to be very
substantial.
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Equilibrium t'quations in tht' currt'nt configuration
The rate ofequilibrium equation in terms of the Lagrange stress S in the reference (undeforme:d) configuration

BO (in the absence of body forces) is

(AI. A2)

where d V, dS and ~ are volume and surface clements and a unit normal to Bo in the reference configuration,
respectively.

Nanson's formula states that

(A3)

Hence, from eqns (A2) and (A3).

0", f n,F_ S~I ds '" r(F.MSMI) dr.
.'a J )a J .f

Since this is true for arbitrary 8, one gets the rate of equilibrium equ;llion in the current configuration as

(A4)

II is interesting to note that the corresponding equ;llion. without using rates (i.e. starting from S"., '" 0), gives the
usual

where (f is lhe ('.wehy stress.

1.1Iqrllllgt· /rll('/;/11/ rutt's

In the I:urrelltl:oll/igumtiull. the Lagrange tral:tion rate is defined. eqn (17). :IS

II is easy to show, using Nanson's formula. that

which is the basis of the definition of tIll (c:qn (3.36) of Mukhe:rjee and Chandra (1987») in the: updated Lagrangian
formulation.

Formula for the currt'nt normul
A more convenient formula for the current normal is

n = N'F-I/IN'F-II,

where I I denotes the absolute value of the vector.


